Tools for Loose Stools: Updates on the Management of *Clostridioides difficile* Colitis Infection

Minkey Wungwattana, PharmD, BCPS-AQ ID Clinical Pharmacist, Infectious Diseases Maine Medical Center, Portland, ME

Disclosures

None to declare

Notable Definitions				
Abbreviation	Definition			
C.difficile or C.diff	Clostridioides (formerly Clostridium) difficile			
CDI	Clostridioides difficile infection			
CDAD	Clostridioides difficile associated diarrhea			
VAN	Vancomycin			
MTZ	Metronidazole			
FDX	Fidaxomicin			
BEZ	Bezlotoxumab			
ACT	Actoxumab			

Objectives

General Objectives

- Distinguish between initial occurrence, first recurrence, and second or subsequent recurrence *C.difficile* colitis infection
- Identify patients who may benefit from treatment with bezlotoxumab

Pharmacist

Design a therapeutic regimen for the treatment of *C.difficile* colitis infection based
 on patient specific factors

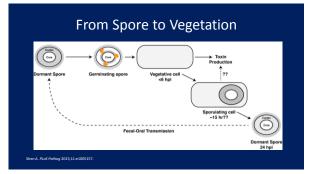
Pharmacy Technician

• List medications that may worsen or contribute to C.difficile colitis infection

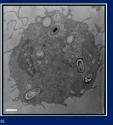
History of C.difficile

- First described in feces in newborn infants in 1935
- Dormant spores → fecal-oral → germination → vegetative state
 Co-exist as non-toxigenic and toxigenic strains
- Toxin production results in colitis
- Genus re-classification from *Clostridium* to *Clostridioides* in 2016

Hall IC et al. Am J Dis Child 1935;49:390-402. Gerding DN Jot J Antimicroph Access 2000-22 berke ER at al. Clin Infect Dis 2012;55:88-92.

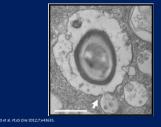

Burden of Disease

- Responsible for:
 - Up to 500,000 infections, approximately 29,000 deaths in 2011
 - Up to 500,000 infections, approximately 15,000 deaths in 2015
- Accounts for > \$1 billion in health care expenditures annually
- In 2013, CDC categorized CDI threat level as 'urgent'


Centers for Disease Control and Prevention. Nearly half a million Americans suffered from Clostridium difficile infections in a single ye

Morbidity Associated with CDI • Colectomy – Pre-2000, colectomy rates associated with CDI : 0.48-1.3% – Early 2000s • Rising rates, 1.6-3.2% between 1989 to 1999 • In 2000-2001, rate of emergency colectomy was 6.2% • Recurrences (10-30%) • CDI patients with ↑ rates of discharges to LTCFs*

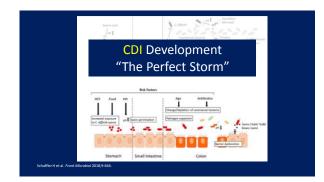
Micek ST et al. Crit Care Med 2013;41:1968-1975. Dubberke ER et al. Emerg Infect Dis 2008;14:1031-10

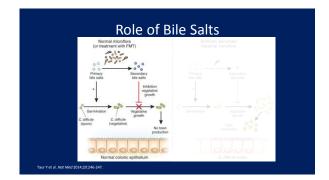


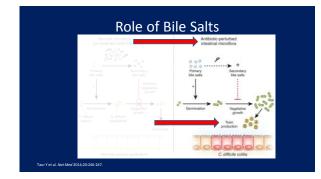
Macrophage uptake of C.difficle spore

Sabia D et al. PLoS One 2012;7:

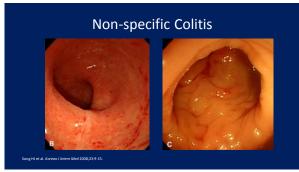
Lysosome fusion with macrophage

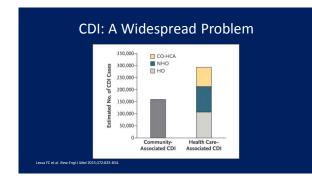






Colonization without CDI


Schaffler H et al. Front Microbiol 2018;9:6



Pseudomembranous Colitis

Song HJ et al. Korean J Intern Med 2008;23:9-

		Incide	nce of CD	1, 2011		
Demographic Characteristic	Community-As	sociated CDI®	Health Care-Ar	sociated CDI ⁺	All CDI	
	Estimated No.	Incidence per	Estimated No.	Incidence per	Estimated No.	Incidence pe
	of Cases	100,000 Persons	of Cases	100,000 Persons	of Cases	100,000 Perso
All cases	159,700	51.9	293,300	95.3	453,000	147.2
	(132,900–186,000)	(43.2–60.5)	(264,200-322,500)	(85.9–104.8)	(397,100-508,500)	(129.1–165.3)
Sex						
Male	64,300	42.5	132,700	87.7	197,000	130.2
	(52,800-75,300)	(34.8–49.8)	(118,700-146,700)	(78.5–97.0)	(171,500-222,000)	(113.3-146.8)
Female	95,400	61.0	160,600	102.7	256,000	163.8
	(80,100-110,700)	(51.2-70.8)	(145,500-175,800)	(93.1-112.5)	(225,600-286,500)	(144.3-183.3)

Lessa FC et al. New Engl J Med 2015;372:825-834.

Adjusted U.S. National Estimates of Burden and Incidence of CDI, 2011

Demographic Characteristic	Community-Associated CDI®		Health Care-As	sociated CDI ⁺	All CDI		
	Estimated No. of Cases	Incidence per 100,000 Persons	Estimated No. of Cases	Incidence per 100,000 Persons	Estimated No. of Cases	Incidence per 100,000 Person	
Age group							
1-17 yr	12,500	17.9	4400	6.3	16,900	24.2	
	(10,000–15,000)	(14.1–21.4)	(3200–5800)	(4.6-8.3)	(13,200-20,800)	(18.7–29.7)	
18-44 yr	35,600	28.7	20,800	18.3	53,400	47.0	
	(26,000–39,200)	(22.9–34.5)	(16,700-24,800)	(14.7–21.9)	(42,700-64,000)	(37.6–56.4)	
45-64 yr	54,100	65.4	68,800	83.1	122,900	148.5	
	(45,600–62,600)	(55.1–75.6)	(61,000–76,600)	(73.7–92.5)	(106,600–139,200)	(128.8–168.1)	
≳65 yr	60,500	146.2	193,300	481.5	259,800	627.7	
	(51,300-69,200)	(124.0-167.2)	(183,300-215,300)	(442.8-520.1)	(234,600-284,500)	(566.8-687.3)	

Lessa FC et al. New Fool / Med 2015-372-825-834

Defining the CDI Episode

- First episode
 - Patient has never experienced CDI
- First recurrence (second episode)
 - Patient must have responded to first episode treatment
 - Return of diarrhea 2 weeks to 2 months after successful treatment of first episode
- Second recurrence (third episode) and beyond – Any subsequent episodes

Defining Severity of CDI							
	Mild-to- Moderate	Severe	Fulminant				
WBC, cells/mm ³	≤ 15,000	> 15,000	n/a				
SCr, mg/dL	< 1.5	> 1.5	n/a				
No. of stools (in 24 hours)	≥ 3	≥ 3	≥ 3				
Clinical presentation		Abdominal pain	Hypotension/shock, ileus, toxic megacolon				
McDonald LC et al. Clin Infect Dis 20	18;66:987-994.						

Risk Factors for Severe CDI

- Leukocytosis (1 WBC)
- Acute renal injury (1 SCr)
- Fever (> 38.3° C) T
- Hypotension

Zar FA et al. *Clin Infect Dis* 2007;45:302-7. Rubin MS et al. C. *Dis Colon Rectum* 1995;38:350-4. Fekety R et al. *Clin Infect Dis* 1997;24:324-33.

- Hypoalbuminemia
- Age > 60 years
- Toxic megacolon
- ICU
- Stool count

Fernandez A et al. J Clin Gastroenterol 2004;38:414-8. Walk ST et al. Clin Infect Dis 2012;55:1661-8. Dellinger RP et al. Crit Care Med 2013;41:580-637.

Historical Treatment Options

- Teicoplanin
- Fusidic acid
- Bacitracin
- Metronidazole
- Vancomycin

Evolution of CDI Management									
	Initial, non-severe	Initial, severe	Initial, fulminant	First recurrence	Second recurrence				
1997	MTZ	VAN	Intra-colonic VAN	Same as initial	Tapered MTZTapered VAN				
2010	MTZ	VAN	 VAN (high dose) + IV MTZ Intra-colonic VAN 	Same as initial	Tapered VAN				
2017	• VAN • FDX	• VAN • FDX	 VAN (high dose) + IV MTZ Intra-colonic VAN 	VAN taperedFDX	 Tapered VAN VAN + RFX FDX FMT 				
Oral admi	Oral administration route unless specified RFX – rifaximin FMT – fecal microbiota transplant								
		Fekety R. Am J Gastroenterol 1997;92:739-50. McDonald I.C et al. Clin Infect Dis 2018;86:587-994. Cohen SH et al. Infect Control Houge Epidemiol 2010;31;41:55.							

A Snapshot into 2010 Guidelines

- Recognized emergence of hypervirulent strain NAP1/BI/027
- Lack of trial data
- Hypervirulence ≠ resistance (↑ MIC)
- VAN may result in earlier time to diarrhea resolution

Cohen SH et al. Infect Control Hosp Epidemiol 2010; Zar FA et al. Clin Infect Dis 2007:45:302-307. Characteristics associated with increased MTZ failure:
 Low albumin

Admission to ICU

Loule T et al. In: Proceedings of the 47th Annual ICAAC; 2007; Chicago IL Washington, DC: ASM Press; 2007. Abstract K-425a.

- Pseudomembranous colitis on
- endoscopic exam

What we took away in 2010..

- Lack of sufficient evidence to deviate from metronidazole for uncomplicated CDI
- Disease with immune compromising component
 Use of immunoglobulins
- Treatment cohorted to factors
 - High risk for failure (severity of CDI)
 - High risk for recurrence
- No role of probiotics

Cohen SH et al. Infect Control Hosp Epidemiol 2010;31;431-55. Zar FA et al. Clin Infect Dis 2007;45:302-307. Louie T et al. In: Proceedings of the 47th Annual ICAAC; 2007; Chicago IL. Washington, DC: ASM Press; 2007. Abstract K-425a.

Rationale for MTZ over VAN

- Concern for vancomycin-resistant Enterococci (VRE)
 development
- Metronidazole less costly
- No clear benefit in clinical trials (to date) suggesting clear benefit of VAN over MTZ

Teasley DG et al. Lancet 1983;2:1043-6. Wenisch C et al. Clin Infect Dis 1996;22:813-8. CDC. MMWR September 22, 1995. Available at: https://www.cdc.gov/mmwr/preview/mmwrhtml/00039349.htm. Accesse March 26, 2019.

2017 Guidelines

Johnson S et al. Clin Infect Dis 2014;59:345-54.

• Zar FA et al. 2007

- Cited as 1 of 2 studies pushing MTZ out of guideline recommendation
- Where was it in 2010 iteration?

• Johnson S et al. 2014

Zar FA et al. Clin Infect Dis 2007;45:302-307.

- Phase III study for polymer, tolevamer

In '2010', Not Enough Muster..

Table 2. Rate of cure of *Clostridium difficile*-associated diarrhea by disease severity and treatment.

No. of patients cured/ Disease							
severity	Mtz group	Vm group	Total	P^{a}			
Mild	37/41 (90)	39/40 (98)	76/81 (94)	.36			
Severe	29/38 (76)	30/31 (97)	59/69 (86)	.02			
All	66/79 (84)	69/71 (97)	135/150 (90)				
	Vitz, metronidazole s were calculated (

Zar FA et al. Clin Infect Dis 2007;45:302-307.

Combined clinical cure among RCTs

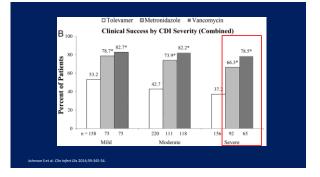
Outcomes	No. of Participants (No. of Studies)	Percentage Resolution	Relative Effect* (95% CI)	PValue	Quality of Evidence (GRADE) ^b	Reference, Firs Author
Direct comparisons of metronidazole	and vancomycin					
Resolution of diarrhea at end of (10 days) treatment	RCTs prior to 2000: 156 (2)	95 (MTR) 98 (VAN)	RR, 0.97 (.91-1.03)	.4		Teasley (168) Wenisch (310)
	RCTs since 2000: 687° (3)	75 (MTR) 85 (VAN)	RR, 0.89 (.8296)	.002		Zar [188] Johnson [170]
	All RCTs: 843 (5)	78 (MTR) 87 (VAN)	RR, 0.89 (.8596)	.0008	⊕⊕⊕⊕ High	
Resolution of diarrhea at end of treatment without CDI recur- rence ~1 month after treatment	RCTs prior to 2000: 156 (2)	85 (MTR) 84 (VAN)	RR, 1.0 (.90-1.2)	1.0		Teasley [168] Wenisch [310]
	RCTs since 2000: (687" (3)	59 (MTR) 70 (VAN)	RR, 0.84 (.7494)	.002		Zar [188] Johnson [170]
	All RCTs: 843 (5)	63 (MTR) 73 (VAN)	RR, 0.87 (.7996)	.003	⊕⊕⊕⊜ High	

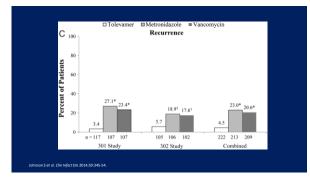
VAN resolved CDI best across 4 studies

Outcomes	No. of Participants (No. of Studies)	Percentage Resolution	Relative Effect* (95% CI)	PValue	Quality of Evidence (GRADE) ^b	Reference, First Author
Direct comparisons of metronidazole	and vancomycin					
Resolution of diarrhea at end of (10 days) treatment	RCTs prior to 2000: 156 (2)	95 (MTR) 98 (VAN)	RR, 0.97 (.91-1.03)	A		Teasley [168] Wenisch [310]
	RCTs since 2000: 687° (3)	75 (MTR) 85 (VAN)	RR, 0.89 (.8296)	.002		Zer (188) Johnson (170)
	All RCTs: 843 (5)	78 (MTR) 87 (VAN)	RR, 0.89 (.8596)	.0008	⊕⊕⊕⊕ High	
Resolution of diarrhea at end of treatment without CDI recur- rence –1 month after treatment	RCTs prior to 2000: 156 (2)	85 (MTR) 84 (VAN)	RR, 1.0 L90-1.2)	1.0		Teasley [168] Wenisch [310]
	RCTs since 2000: (687° (3)	59 (MTR) 70 (VAN)	RR, 0.84 (.7494)	.002		Zar [188] Johnson [170]
	All RCTs: 843 (5)	63 (MTR) 73 (VAN)	RR, 0.87 (.7996)	.003	⊕⊕⊕⊖ High	
McDonald LC et al. Clin Infect Dis	2018;66:987-994.					

VAN resolved CDI best across 4 studies

Outcomes	No. of Participants (No. of Studies)	Percentage Resolution	Relative Effect* (95% CI)	PValue	Quality of Evidence (GRADE) ^b	Reference, Fi Author
Direct comparisons of metronidazole	and vancomycin					
Resolution of diarrhea at end of (10 days) treatment	RCTs prior to 2000: 156 (2)	95 (MTR) 98 (VAN)	RR, 0.97 (.91–1.03)	A		Teasley (168) Wenisch (310
	RCTs since 2000: 687° (3)	75 (MTR) 85 (VAN)	RR, 0.89 (.8296)	.002		Zar [188] Johnson [170
	All RCTs: 843 (5)	78 (MTR) 87 (VAN)	RR, 0.89 (.8596)	.0008	⊕⊕⊕⊜ High	
Pesolution of diarrhea at end of treatment without CDI recur- rence –1 month after treatment	RCTs prior to 2000: 156 (2)	85 (MTR) 84 (VAN)	RR, 1.0 (.90-1.2)	1.0		Teasley [168] Wenisch [310
	RCTs since 2000: 687 ^e (3)	59 (MTR) 70 (VAN)	RR, 0.84 (.7494)	.002		Zer [188] Johnson [170
	All RCTs: 843 (5)	63 (MTR) 73 (VAN)	RR, 0.87 (.7996)	.003	⊕⊕⊕⊖ High	


Tolevamer in CDI


- Tolevamer
 - High molecular-weight polymer shown to bind/neutralize C.difficile toxins in vitro
 - Phase II dose-response study showed promising results
- Randomized, double-dummy, double-blinded, active-
- controlled, parallel-designed efficacy study
- Study sites:
 - United States, Canada, Europe, Australia

inson S et al. Clin Infect Dis 2014;59:345-54.

Study 301 vs. 302						
Study 301 Study 302 n=543 n=528						
Age, years		Slightly older population				
mean ± SD	62 ± 17.7 (18-99)	68 ± 16.4 (18-97)				
Body Weight, kg	Heavier patients					
mean ± SD	75 ± 24	68 ± 17				
Inpatient, %		Majority inpatient population				
	56%	91%				
Johnson S et al. <i>Clin Infect Dis</i> 201	••••	91%				

Disease Severity Matters Recurrence rates tend to be lower with mild disease - Vancomycin - 5% - Metropidazole - 8%							
	Classification	Tolevamer	Metronidazole	Vancomycin	P (M vs. V)		
	Mild	3/82 (3.7)	14/58 (24.1)	14/63 (22.2)	0.69		
Recurrence*	Moderate	5/88 (5.7)	19/90 (21.1)	12/94 (12.8)	0.12		
*in patients that	Severe	2/52 (3.8)	16/65 (24.6)	17/52 (32.7)	0.41		
met primary clinical cure definition	[p-value]	0.79	0.85	0.016			
Zar FA et al. Clin Infi	ect Dis 2007;45:302-307.	John	son S et al. Clin Infect Dis 2014;5	9:345-54.			

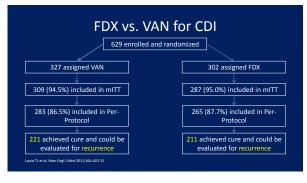
Recu	irrence R	ates Acr	oss 2 Stu	udies		
	No. of patients who experienced relapse/no. of patients who were cured (%)					
	Zar FA	A et al	Johnson S et al			
	MTZ	VAN	MTZ	VAN		
Mild	3/37 (8)	2/39 (5)	14/58 (24)	14/63 (22)		
Severe	6/29 (21) 3/30 (10)		16/65 (25)	17/52 (33)		
Zar FA et al. Clin Infect Dis 2007;45:302-307. Johnson S et al. Clin Infect Dis 2014;59:3						

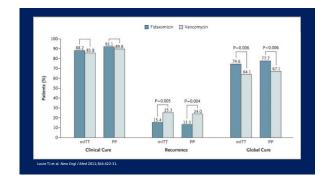
Recurrence Rates Across 2 Studies

		No. of patients who experienced relapse/no. of patients who were cured (%)				
	Zar FA et al		Johnson S et al			
		VAN		VAN		
Mild		2/39 (5)		14/63 (22)		
Severe		3/30 (10)		17/52 (33)		
Zar FA et al. Clin Infect Dis 200	7;45:302-307.	Johnson S et al. <i>Clin I</i>	nfect Dis 2014;59:345-54.			

Considerations for Recurrence Reduction

Of the patients who respond clinically:


- 1. Do patients with severe CDI who receive vancomycin <u>truly</u> experience more recurrences?
- 2. If this is true, should we approach severe CDI patients differently?
 - Vancomycin + bezlotoxumab
 Fidaxomicin


 - Fidaxomicin + bezlotoxumab Rx + fecal microbiota transplant

<u>REMEMBER</u>: Goals should include considerations for recurrence

New Kid on the Block

- Fidaxomicin FDA approved May 27, 2011
- 2010 CDI management guidelines
 - Study abstract, 2007 ICAAC
 - Full manuscript, 2011 NEJM
- Incumbent on clinicians to self-evaluate clinical trial and apply to practice

Subgroup	Modified Inte	ention-to-Treat Po	pulation	Per-Pr	rotocol Populatio	n
	Fidaxomicin	Vancomycin	P Value	Fidaxomicin	Vancomycin	P Value
	no./tota	al no. (%)		no./tota	1 no. (%)	
Age						
<65 yr	19/150 (12.7)	27/134 (20.1)	0.09	12/126 (9.5)	22/118 (18.6)	0.04
≈65 yr	20/103 (19.4)	40/131 (30.5)	0.05	16/85 (18.8)	31/103 (30.1)	0.08
Hospital status						
Inpatient	24/136 (17.6)	40/146 (27.4)	0.05	19/106 (17.9)	29/111 (26.1)	0.15
Outpatient	15/117 (12.8)	27/119 (22.7)	0.05	9/105 (8.6)	24/110 (21.8)	0.007
Previous episode of C. difficile infection						
No	30/211 (14.2)	52/217 (24.0)	0.01	22/175 (12.6)	41/183 (22.4)	0.02
Yes	9/42 (21.4)	15/48 (31.2)	0.30	6/36 (16.7)	12/38 (31.6)	0.14

Subgroup	Modified Inte	ention-to-Treat Po	pulation	Per-Pr	rotocol Populatio	m
	Fidaxomicin	Vancomycin	P Value	Fidaxomicin	Vancomycin	P Value
	no./tota	al no. (%)		no./tota	1 no. (%)	
Severity of disease at baseline						
Mild	7/59 (11.9)	20/68 (29.4)	0.02	4/44 (9.1)	13/55 (23.6)	0.06
Moderate	20/102 (19.6)	18/88 (20.5)	0.89	15/90 (16.7)	18/71 (25.4)	0.18
Severe	12/92 (13.0)	29/109 (26.6)	0.02	9/77 (11.7)	22/95 (23.2)	0.05
Strain type						
NAP1/8I/027	16/59 (27.1)	14/67 (20.9)	0.42	11/45 (24.4)	13/55 (23.6)	0.93
Non-NAP1/81/027	12/117 (10.3)	34/121 (28.1)	<0.001	8/103 (7.8)	27/106 (25.5)	<0.001
Concomitant systemic antimicrobial therapy						
Yes	14/81 (17.3)	25/90 (27.8)	0.10	8/56 (14.3)	20/65 (30.8)	0.03
No	25/172 (14.5)	42/175 (24.0)	0.03	20/155 (12.9)	33/156 (21.2)	0.05

Lower recurrence rates among patients who received FDX driven by nonhypervirulent strain of *C.difficile*

In '2017', Not Enough Muster..

XXIX. What are the best treatments of an initial CDI episode to ensure resolution of symptoms and sustained resolution 1 month after treatment?

Recommendations

I et al. New Engl J Med 2011:364:422-31

 Either vancomycin or fidaxomicin is recommended over metronidazole for an initial episode of CDI.

McDonald LC et al. Clin Infect Dis 2018;66:987-994.

Thoughts on bezlotoxumab..

Lack of guidance in 2017 updates

Since completion of this guideline, a new therapeutic agent and a molecular diagnostic test platform have become available for CDI. Bezlotoxumab, a monoclonal antibody directed against toxin B produced by C. difficile, has been approved as adjunctive therapy for patients who are receiving antibiotic treatment for CDI and who are at high risk for recurrence [10]. Multiplex polymerase chain reaction (PCR) platforms that detect C. difficile as part of a panel of >20 different enteric pathogens have also become available [11]. These most recent innovations and other innovations that may become available in the near future will be covered in subsequent quideline undates.

Concept of Immunotherapy

If patients lacking innate anti-toxin immunoglobulins are prone to disease development, would immunoglobulin therapy directed against toxins aid in the management of CDAD?

Control Healthy CDI Image: Control Healthy CDI Image: Control Image: Control Image: Control Image: Control Healthy CDI Image: Control Image: Contro Image: Control Image: Contro

Tissue vs. Lumen Concentrations Tissue Lumen 400 100 Black Bar: C.difficile-infected (hlgd) (hlgh) 60 healthy hamster hamster 40 lle Cec Jej Col

Standard of Care (SoC) Regimens

Characteristic	Actoxumab plus Bezlotoxumab (N = 773)	Bezlotoxumab (N = 781)	Actoxumab (N=232)	Placebo (N = 773)	All Participants (N=2559)
		numb	er of participants (pe	rcent)	
Standard-of-care antibiotic					
Metronidazole	366 (47.3)	365 (46.7)	112 (48.3)	353 (45.7)	1196 (46.7)
Vancomycin	366 (47.3)	370 (47.4)	113 (48.7)	372 (48.1)	1221 (47.7)
Fidaxomicin	25 (3.2)	30 (3.8)	7 (3.0)	30 (3.9)	92 (3.6)
Inpatient	523 (67.7)	530 (67.9)	158 (68.1)	520 (67.3)	1731 (67.6)
Female sex	423 (54.7)	442 (56.6)	130 (56.0)	449 (58.1)	1444 (56.4)
Age ≥65 years	441 (57.1)	390 (49.9)	122 (52.6)	405 (52.4)	1358 (53.1)
≥1 Episodes of C. difficile infection in previous 6 mo	200 (25.9)	216 (27.7)	69 (29.7)	219 (28.3)	704 (27.5)
≥2 Previous C. <i>difficile</i> infection episodes ever	103 (13.3)	100 (12.8)	34 (14.7)	126 (16.3)	363 (14.2)
Wilcox MH et al. N Engl J Med 2017;376:305-3	17.				

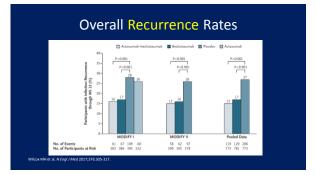
Antibiotic Exposure after CDI Treatment

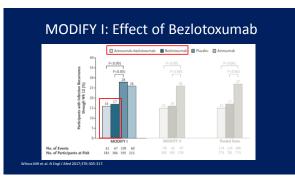
Characteristic	Actoxumab plus Bezlotoxumab (N = 773)	Bezlotoxumab (N=781)	Actoxumab (N=232)	Placebo (N=773)	All Participants (N=2559)
		numbe	er of participants (per	rcent)	
Severe C. difficile infection*	142 (18.4)	122 (15.6)	31 (13.4)	125 (16.2)	420 (16.4)
Immunocompromised [†]	163 (21.1)	178 (22.8)	55 (23.7)	153 (19.8)	549 (21.5)
Other antibiotic use during standard-of-care	333 (43.1)	292 (37.4)	86 (37.1)	317 (41.0)	1028 (40.2)
therapy‡					
Other antibiotic use after standard-of-care therapy:	274 (35.4)	273 (35.0)	83 (35.8)	275 (35.6)	908 (35.5)
PCR ribotype					
Participants with positive culture	477 (61.7)	490 (62.7)	144 (62.1)	486 (62.9)	1597 (62.4)
Most common strains*****	222 (46.5)	210 (42.9)	57 (39.6)	233 (47.9)	722 (45.2)
027, 078, or 244 strain 11	90 (18.9)	102 (20.8)	30 (20.8)	115 (23.7)	337 (21.1)
027 strain††	76 (15.9)	89 (18.2)	24 (16.7)	100 (20.6)	289 (18.1)
Wilcox MH et al. N Engl J Med 2017;376:305-31	<i>1</i> .				

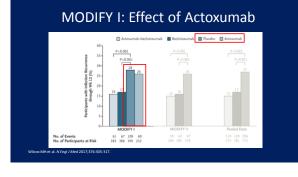
Role of Bezlotoxumab

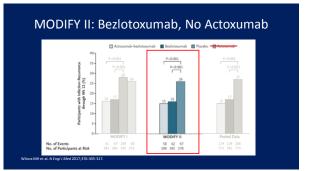
Did bezlotoxumab impact initial cure rates of infection? — "Initial Cure": no diarrhea for 2 consecutive days after completion of standard-of-care antibiotic therapy administered for ≤ 16 days

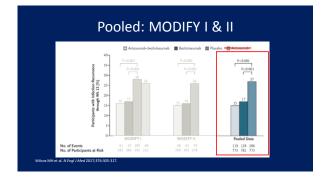
		MODIFY	1	MODIFY II		
	BEZ (n=386)	Placebo (n=395)	95% CI	BEZ (n=395)	Placebo (n=378)	95% CI
Initial Cure, n (%)	299 (77)	327 (83)	[-10.9,0.3]	326 (83)	294 (78)	[-0.9, 10.4]
BEZ: bezlotoxumab CI : confidence interval						
Wilcox MH et al. N Engl J Me	d 2017;376:305-317					


Impact of bezlotoxumab on initial cure						
		MODIFY	1		MODIFY II	
	ACT+BEZ (n=383)	Placebo (n=395)	95% CI	ACT+BEZ (n=390)	Placebo (n=378)	95% CI
Initial Cure, n (%)	286 (75)	327 (83)	[-13.9,-2.4]	282 (72)	294 (78)	[-11.6, 0.6]
BEZ: bezlotoxumab ACT: actoxumab CI : confidence interval						
Wilcox MH et al. N Engl J Me	/ 2017;376:305-317.					


Pooled MODIFY I & II Cure Rates


	Pooled Datas	et					
	Clinical Cure	Trea	Treatment vs. Placebo				
Treatment	% (n/N)	Difference	Adjusted Difference [95% CI]	p-Value			
ACT + BEZ	73.5 (568/773)	-6.9	-6.8 [-11.0, -2.6]	0.0014			
BEZ	80 (625/781)	-0.3	-0.3 [-4.3, 3.7]	0.8832			
Placebo	80.3 (621/773)						
Wilcox MH et al. N Engl J M	,						


Signal towards ACT affecting clinical cure


	Pooled Datas	et					
	Clinical Cure	Trea	Treatment vs. Placebo				
Treatment	% (n/N)	Difference	Adjusted Difference [95% CI]	p-Value			
ACT + BEZ	73.5 (568/773)	-6.9	-6.8 [-11.0, -2.6]	0.0014			
BEZ	80 (625/781)	-0.3	-0.3 [-4.3, 3.7]	0.8832			
Placebo	80.3 (621/773)						
Wilcox MH et al. N Engl J N	fed 2017;376:305-317.						

Safety analysis

- Overall adverse drug events (ADE) similar
 - Infusion related: 10% BEZ vs. 7.6% placebo
 Drug related: 7.5% BEZ vs. 5.9% placebo
 - Drug related: 7.5% BEZ VS. 5.
- History of congestive heart failure
 - Serious ADE due to heart failure: 12.7% BEZ vs. 4.8% placebo
 - Deaths due to cardiac ADE: 19.5% BEZ vs. 12.5% placebo
 - Death occurrence monitored and collected through 12-week follow-up period

Wilcox MH et al. N Engl J Med 2017;376:305-317.

Merck & Co, Inc. Zinplava (bezlotoxumab) [package insert]. Merck & Co, Inc: Whitehouse Station, NJ, 2016.

- Lessons from Phase III Trial
- Actoxumab (anti-toxin A) did not impact clinical cure or recurrence
- Bezlotoxumab effective in reducing recurrences
 - NNT to prevent 1 recurrent CDI (all population) :
 - − NNT to prevent 1 recurrent CDI (among \ge 65 years) : 6
- Difficult to describe role of FDX + BEZ; FDX underrepresented
- · Cautious use in patients with cardiac history

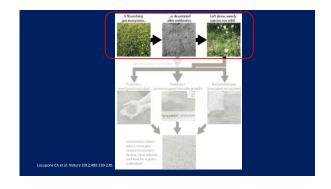
NNT : number needed to treat

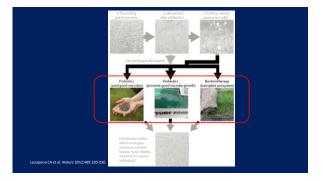
Со	st Consideratio	ns
	athing a	
Zinplava® (bezlotoxumab)	Dificid® (fidaxomicin)	Firvang® (vancomycin oral sol)
\$4,560 per vial Packaging: 25 mg/mL, 40mL	\$4,639 per bottle Packaging: 200 mg tab, 20 tabs	\$150 - 50 mg/mL, 150 mL (125 mg 4x daily) \$239 - 50 mg/mL, 300 mL (500 mg 4x daily) Prices displayed as average wholesale prices.

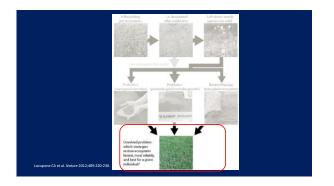
PROBIOTICS

No guideline probiotic recommendation

XXVII. What is the role of probiotics in primary prevention of CDI?


Recommendation


 There are insufficient data at this time to recommend administration of probiotics for primary prevention of CDI outside of clinical trials (*no recommendation*).


Donald LC et al. Clin Infect Dis 2018;66:987-994.

Rationale for Probiotic Use in CDAD

- Deliver bacteria, other microorganisms to gastrointestinal tract and restore equilibrium
- Decrease available area for pathogenic microorganisms to colonize and develop into disease downstream

Challenges of Probiotic Therapy in CDI

- Patient selection
- Efficacy
- 'Agent' selection
 Diversity
- Safety
- Timing

Saccharomyces boulardii

- Immunocompromised patients with certain underlying conditions at highest risk
 - Intravenous catheter
 - Previous receipt of antibiotic therapy
- Of 37 cases reviewed, 32 cases involved *S.boulardii*-containing probiotic use
- Despite overall low rates of *Saccharomyces* spp. infections, 40% of all reported cases identified probiotic as the source

nache-Angoulvant A et al. Clin Infect Dis 2005;41:1559-1568.

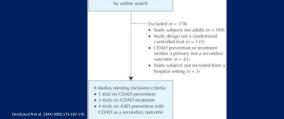
Lactobacillus Complications

Reported cases of *Lactobacillus* spp. complications attributed to probiotic use

- Bacteremia
- Endocarditis
- Secondary gastrointestinal complications
- Catheter-associated infections

Crow JR et al. Pharmacotherapy 2015;35:1016-25.

Lactobacillus Complications


Reported cases attributed to pr

- Bacteremi
- Endocardin
- Secondary g
- Catheter-as

Crow JR et al. Pharmacotherapy 2015;35:1016-25

Pre-2005 Stance on Probiotics

Trial	Probiotic and duration	Outcome measure (length of follow-up)	Comments
Primary outc	ome		
Plummer et al, 2004; ¹⁵ prevention	Lactobacillus acidophilus and Bilidobacterium bilidum for 20 d	Presence of C. difficile (20 d)	No difference in toxin positivity between treatment arms among patients with positive culture; lower incidence of diarrhea reported among culture- and toxin-positive subjects in probiotic group; short follow-up
McFarland et al, 1994; ³⁸ treatment	Saccharomyces boulardii for 4 wk	Diarrhea and at least 1 positive assay for C. difficile by culture or toxin A or B (8 wk)	Concomitant use of different antibiotics for differing lengths of time; no difference in culture positivity between treatment arms, but significantly fewer toxin B positive cases in probiotic group
Surawicz et al, 2000; ¹⁷ treatment	S. boulardii for 28 d	Diarrhea and at least 1 positive assay for C, difficile by culture or toxin A or B (8 wk)	Concomitant antibiotic assigned to patients after randomization; no difference in culture or toxin positivity in subgroup taking high-dose vancomycin; results not reported for other groups
Wullt et al, 2003; ¹⁸ treatment	L. plantarum 299v for 38 d	Diarrhea (5-10 d) Positive assay for C, difficile toxins A or B (11-13 d)	Small sample; no difference in culture positivity after treatment among 20 patients who had no diarrhea after 5–10 d $$

Since 2010 Guidelines..

 Increasing case-reports, retrospective observational analysis associating probiotic use as source of invasive infections

> Nutr 2006;83:1256-64. acotherapy 2019;39:399-403

il. Am JC atal Phy

- Subject to bias
- Mainly in 'at risk' population
 - Immunocompromised
 - Certain age cohort (> 60 years)

xx MJ et al. Open Forum Infect Dis 2018;5:ofy192. xsta RL et al. BMC Complement Altern Med 2018;18:329.

PROTON PUMP INHIBITORS (PPIS)

No guidance on PPI use

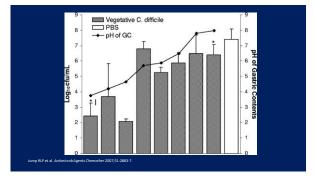
XXVI. What is the role of proton pump inhibitor restriction in controlling CDI rates?

Recommendation

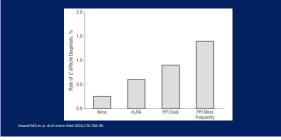
1. Although there is an epidemiologic association between proton pump inhibitor (PPI) use and CDI, and unnecessary PPIs should always be discontinued, there is insufficient evidence for discontinuation of PPIs as a measure for preventing CDI (no recommendation).

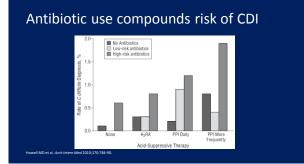
Infect Dis 2018:66:987-994

Effect of High pH Environment


Jump RLP et al. Antimicrob Agents Chemother 2007;51:2883-7

- Gastric acid does not kill C.difficile spores
- Proposed mechanism for PPI contributions to CDI
 - Vegetative form of *C.difficile* killed by acid
 - Survival of vegetative form of C.difficle as 1 pH
 - Presence of bile salts 1 pH


Rao A et al. Antimicrob Agents Chemother 2006;50:3901-3904.


Growth of Vegetative C.difficile GC, unadjusted SIGC, pH 4 GC, pH 5 🗷 GC, pH 6 GC, pH 7 D PBS

GC : gastric contents PBS : Phosphatebuffered saline

Impact of PPI on Nosocomial CDI

Factor	Odds Ratio (95% CI)	P-value
No acid suppression therapy	1 [reference]	
H ₂ RA only	1.53 (1.12-2.10)	0.008
Daily PPI	1.74 (1.39-2.18)	<0.001
PPI more frequent than daily	2.36 (1.79-3.11)	<0.001
Low-risk antibiotics	1.82 (1.17-2.82)	0.008
High-risk antibiotics	3.37 (2.64-4.31)	<0.001
Howell MD et al. Arch Intern Med 2010;170:784-90.		

Recent reviews of PPIs association with CDI

Cao F et al.

- Time period up to Dec 2016
- Analysis of 50 studies
- PPI users vs. non-users
 OR 1.26
 - [CI: 1.12-1.39], p <0.001
- /² : 40.8%

Can Flet al / Hoso Infect 2018-98-4-

Recent reviews of PPIs association with CDI

Cao F et al.	Trifan et al.
• Time period up to Dec 2016	Time period up to Mar 2017
Analysis of 50 studies	Analysis of 56 studies
• PPI users vs. non-users	PPI users vs. non-users
– OR 1.26	– OR 1.99
- [CI: 1.12-1.39], <i>p</i> <0.001	- [Cl: 1.73-2.30], p <0.001
• <i>I</i> ² : 40.8%	• <i>I</i> ² : 85.4%
Cao F et al. J Hosp Infect 2018;98:4-13. Trifa	an A et al. Warld J Gasteroenterol 2017;32:6500-6515.

No Rigor, No Consensus

- Conflicting clinical trial data
- Development of CDI^{1,2}
 - Patients in ICU on PPIs were twice is likely to develop CDI than those not on PPIs
 - Estimated 65% increase in CDI among PPI users
- Recurrence of CDI^{3,4}
 - Continuous use of PPIs 1.5 times risk of CDI recurrence
 - No association among 894 inpatients; unadjusted for antibiotic exposure

. Barletta JF et al. Critical Care 2014;18:714. Janarthanan S et al. Am J Gostroenterol 2012:107:1001-10. Freedbers DE et al. Am J Gostroenterol 2013:108:1794-1801

CONCLUDING THOUGHTS

Tackling Challenge of Recurrence

XXIX. What are the best treatments of an initial CDI episode to ensure resolution of symptoms and sustained resolution 1 month after treatment?

Recommendations

1. Either vancomycin or fidaxomicin is recommended over metronidazole for an initial episode of CDI.

McDonald LC et al. Clin Infect Dis 2018;66:987-994.

Tackling Challenge of Recurrence

- Consider initial cure first
 Gauge severity of illness
- Compile risk factors for failing to achieve initial cure
 Evaluate risk for recurrence

Tua									
	Age ≥ 75 years	Unformed bowel movements ≥ 10 in 24H							
	SCr ≥ 1.2 mg/dL	Previous CDI episode(s)							

- Modifiable risk factors and/or behaviors
 - Correctable reason for receiving frequent antibiotics
 - Medication review (PPIs, probiotics, GI motility agents)

D'Agostino RB et al. Clin Infect Dis 2014;58:1386-93

	Points	Points for Each Risk Factor			Predicted Risk of Recurrence	
No. of Risk Factors	Age ≥75 y	UBM ≥10/d	Cr ≥1.2 mg/dL	FDX	VAN	
(A) Score sheet for	eople with	no prior e	pisode			
No risk factors	0	0	0	10%	18%	
1 Risk factor						
Age	1	0	0	13%	24%	
UBM	0	1	0	13%	24%	
Cr	0	0	2	17%	29%	
2 Risk factors						
Age and UBM	1	1	0	17%	29%	
Age and Cr	1	0	2	21%	35%	
UBM and Cr	0	1	2	21%	35%	
3 Risk factors						
Age, UBM, and Cr	1	1	2	28%	44%	

	Points	for Each R	isk Factor	Ris	icted k of rrence
No. of Risk Factors	Age ≥75 y	UBM ≥10/d	Cr ≥1.2 mg/dL	FDX	VAN
(B) Score sheet for p	eople with	n prior epis	ode		
No risk factors	0	0	0	14%	25%
1 Risk factor					
Age	1	0	0	19%	32%
UBM	0	1	0	19%	32%
Cr	0	0	2	24%	39%
2 Risk factors					
Age and UBM	1	1	0	24%	39%
Age and Cr	1	0	2	29%	45%
UBM and Cr	0	1	2	29%	45%
3 Risk factors					
Age, UBM, and Cr	1	1	2	37%	54%

Interpretation Example

I have a patient who I have identified would benefit more from FDX than VAN.

- The patient has experienced CDI in the past
- Patient has 'recurrence' risk factors including:
 Age 78
 - Unformed bowel movements of 14 in past 24 hours

	Points	for Each Ri	isk Factor	Ris	icted k of rrence
No. of Risk Factors	Age ≥75 y	UBM ≥10/d	Cr ≥1.2 mg/dL	FDX	VAN
(B) Score sheet for p	eople wit	h prior epis	ode		
No risk factors	0	0	0	14%	25%
1 Risk factor					
Age	1	0	0	19%	32%
UBM				19%	
Cr	0	0	2	24%	
2 Risk factors					
Age and UBM	1	1	0	24%	39%
Age and Cr	1	0	2	29%	45%
UBM and Cr	0	1	2	29%	45%
3 Risk factors					
Age, UBM, and Cr	1	1	2	37%	54%

		Points	for Each Ris	sk Factor	Ris	licted k of rrence
		Age	URM	Cr >1.2	FDX	VAN
By selecting FDX,	you have int	oren	tlv redu	iced	1 2/4	1751
, 0 ,					14%	25%
the risk of recurre	ence from 39	1% to	24%. I	S		
24% predicted ri	sk of recurre	nce a	cceptal	ble?	19%	32%
24% predicted ri	sk of recurre	nce <mark>a</mark>	cceptal	ble?	19% 19%	32% 32%
24% predicted ri	sk of recurre	nce <u>a</u>	cceptal	ble?	19% 19% 24%	
24% predicted ri					19%	32%
24% predicted ri	G				19%	32%
24% predicted ri	2 Risk factors			Z	19% 24%	32% 39%
24% predicted ri	2 Risk factors Age and UBM			Z	19% 24% 24%	32% 39% 39%
24% predicted ri	2 Risk factors Age and UBM Age and Cr	1		0	19% 24% 24% 29%	32% 39% 39% 45%

Prophylaxis in HSCT Population

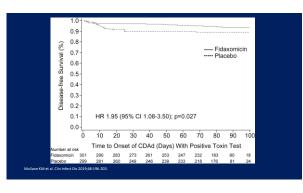
- Mean duration of therapy
 - 22 ± 8.61 days – Fidaxomicin:
 - Placebo:

22.7 ± 8.99 days

- Approximately 64% of each cohort completed follow-up
- Additional antibiotic exposure in 75% of study participants

Safety analysis of FDX vs. Placebo

- Reported ADEs similar between fidaxomicin and placebo 71% FDX vs. 73% placebo
 - Diarrhea
 - 62% FDX vs. 67% placebo
 - Febrile neutropenia 48% FDX vs. 37% placebo


41% FDX vs. 41% placebo

- Vomiting
- Median time to neutrophil engraftment 9 days in both cohorts

Nausea

Confirmed CDAD at Pre-defined Endpoints	
---	--

	Fidaxomicin n=301	Placebo n=299	95% CI	<i>P</i> -value
30 days after end of treatment, n (%)	13 (4.3)	32 (10.7)	[2.2, 10.6]	0.0014
60 days after end of treatment, n (%)	17 (5.6)	32 (10.7)	[0.7, 9.4]	0.0117
70 days after end of treatment, n (%)	14 (4.7)	32 (10.7)	[1.8, 10.3]	0.0026
Mullane KM et al. Clin Infect Dis 2019;68:	196-203.			

Recurrence: understudied, undervalued

- ICU population¹
 - PPI, stress ulcer prophylaxis
 - Broad spectrum antibiotic exposure
- Rx prophylaxis in antibiotic-necessary scenarios
 - MTZ
 - VAN²
 - FDX³

4 Do's for the 'Diff'

- Reserve oral metronidazole for scenarios where vancomycin or fidaxomicin is unavailable
- Fidaxomicin or vancomycin?
- Not a slam dunk Consider cost: benefit profile
 - Insurances may shift towards covering fidaxomicin

 - Recurrence considerations
 Risk factor assessment
 - Beziotoximab may have a role in ↓ risk of CDI recurrences in select populations
 Rx prophylaxis (think about residual damage, ADEs)

Help manage disease by reviewing all medications patients may be taking

Probiotics
 Unnecessary proton pump inhibitors

Gimetessary proton point printipartitions
 Gimetility agents (stimulant laxatives, osmotic laxatives)
 Stool softeners
 Ask about over-the-counters!

- Initial agent selection

Parting Thoughts

- C.difficile colitis is a disease that presents as a spectrum - Mild or mild-to-moderate
 - Moderate-to-severe
 - Fulminant or toxic megacolon
- Risk factors for failure, mortality, recurrences are important to consider when selecting and reviewing pharmacotherapy
- Be comfortable with the data and consider all options
 - Fidaxomicin vs. oral vancomycinFecal microbiota transplantation
 - Bezlotoxumab

Unanswered Areas of CDI Management

- Would tolevamer have been better studied as add-on to SoC for reducing recurrence?
- If BEZ does not impact initial cure of CDI, does it need to be given at the same time as treatment? Outpatient
- What role do probiotics (in any form) play down the road after patients achieve initial clinical cure?